Enhancing Spark application submission using Spark access control extension
When you submit a Spark application that uses external storage buckets registered in watsonx.data, Spark access control extension allows additional authorization thereby enhancing security. If you enable the extension in the spark configuration, only authorized users are allowed to access and operate watsonx.data catalogs through Spark jobs.
You can enable the Spark access control extension for Iceberg, Hive and Hudi catalogs.
You can create data policies to grant or deny access for catalog, schema, and table even column to a user or user group. Besides data level authorization, storage privilege is also considered. For more information related to the access control checks on catalogs, buckets, schemas and tables, see Managing roles and privileges.
Prerequisites
- Create Cloud Object Storage to store data used in the Spark application. To create Cloud Object Storage and a bucket, see Creating a storage bucket. You can provision two buckets, data-bucket to store watsonx.data tables and application bucket to maintain Spark application code.
- Register Cloud Object Storage bucket in watsonx.data. For more information, see Adding bucket catalog pair.
- Upload the Spark application to the storage, see Uploading data.
- You must have IAM administrator role or MetastoreAdmin role, for creating schema or table inside watsonx.data.
Procedure
Spark access control extension supports native Spark engine.
-
To enable the Spark access control extension, you must update the Spark configuration with
add authz.IBMSparkACExtension to spark.sql.extensions
. -
Save the following Python application as iceberg.py.
Iceberg is considered as an example. You can also use Hive and Hudi catalogs.
from pyspark.sql import SparkSession
import os
def init_spark():
spark = SparkSession.builder \
.appName("lh-spark-app") \
.enableHiveSupport() \
.getOrCreate()
return spark
def create_database(spark):
# Create a database in the lakehouse catalog
spark.sql("create database if not exists lakehouse.demodb LOCATION 's3a://lakehouse-bucket/'")
def list_databases(spark):
# list the database under lakehouse catalog
spark.sql("show databases from lakehouse").show()
def basic_iceberg_table_operations(spark):
# demonstration: Create a basic Iceberg table, insert some data and then query table
spark.sql("create table if not exists lakehouse.demodb.testTable(id INTEGER, name VARCHAR(10), age INTEGER, salary DECIMAL(10, 2)) using iceberg").show()
spark.sql("insert into lakehouse.demodb.testTable values(1,'Alan',23,3400.00),(2,'Ben',30,5500.00),(3,'Chen',35,6500.00)")
spark.sql("select * from lakehouse.demodb.testTable").show()
def create_table_from_parquet_data(spark):
# load parquet data into dataframe
df = spark.read.option("header",True).parquet("file:///spark-vol/yellow_tripdata_2022-01.parquet")
# write the dataframe into an Iceberg table
df.writeTo("lakehouse.demodb.yellow_taxi_2022").create()
# describe the table created
spark.sql('describe table lakehouse.demodb.yellow_taxi_2022').show(25)
# query the table
spark.sql('select * from lakehouse.demodb.yellow_taxi_2022').count()
def ingest_from_csv_temp_table(spark):
# load csv data into a dataframe
csvDF = spark.read.option("header",True).csv("file:///spark-vol/zipcodes.csv")
csvDF.createOrReplaceTempView("tempCSVTable")
# load temporary table into an Iceberg table
spark.sql('create or replace table lakehouse.demodb.zipcodes using iceberg as select * from tempCSVTable')
# describe the table created
spark.sql('describe table lakehouse.demodb.zipcodes').show(25)
# query the table
spark.sql('select * from lakehouse.demodb.zipcodes').show()
def ingest_monthly_data(spark):
df_feb = spark.read.option("header",True).parquet("file:///spark-vol/yellow_tripdata_2022-02.parquet")
df_march = spark.read.option("header",True).parquet("file:///spark-vol/yellow_tripdata_2022-03.parquet")
df_april = spark.read.option("header",True).parquet("file:///spark-vol/yellow_tripdata_2022-04.parquet")
df_may = spark.read.option("header",True).parquet("file:///spark-vol/yellow_tripdata_2022-05.parquet")
df_june = spark.read.option("header",True).parquet("file:///spark-vol/yellow_tripdata_2022-06.parquet")
df_q1_q2 = df_feb.union(df_march).union(df_april).union(df_may).union(df_june)
df_q1_q2.write.insertInto("lakehouse.demodb.yellow_taxi_2022")
def perform_table_maintenance_operations(spark):
# Query the metadata files table to list underlying data files
spark.sql("SELECT file_path, file_size_in_bytes FROM lakehouse.demodb.yellow_taxi_2022.files").show()
# There are many smaller files compact them into files of 200MB each using the
# `rewrite_data_files` Iceberg Spark procedure
spark.sql(f"CALL lakehouse.system.rewrite_data_files(table => 'demodb.yellow_taxi_2022', options => map('target-file-size-bytes','209715200'))").show()
# Again, query the metadata files table to list underlying data files; 6 files are compacted
# to 3 files
spark.sql("SELECT file_path, file_size_in_bytes FROM lakehouse.demodb.yellow_taxi_2022.files").show()
# List all the snapshots
# Expire earlier snapshots. Only latest one with compacted data is required
# Again, List all the snapshots to see only 1 left
spark.sql("SELECT committed_at, snapshot_id, operation FROM lakehouse.demodb.yellow_taxi_2022.snapshots").show()
#retain only the latest one
latest_snapshot_committed_at = spark.sql("SELECT committed_at, snapshot_id, operation FROM lakehouse.demodb.yellow_taxi_2022.snapshots").tail(1)[0].committed_at
print (latest_snapshot_committed_at)
spark.sql(f"CALL lakehouse.system.expire_snapshots(table => 'demodb.yellow_taxi_2022',older_than => TIMESTAMP '{latest_snapshot_committed_at}',retain_last => 1)").show()
spark.sql("SELECT committed_at, snapshot_id, operation FROM lakehouse.demodb.yellow_taxi_2022.snapshots").show()
# Removing Orphan data files
spark.sql(f"CALL lakehouse.system.remove_orphan_files(table => 'demodb.yellow_taxi_2022')").show(truncate=False)
# Rewriting Manifest Files
spark.sql(f"CALL lakehouse.system.rewrite_manifests('demodb.yellow_taxi_2022')").show()
def evolve_schema(spark):
# demonstration: Schema evolution
# Add column fare_per_mile to the table
spark.sql('ALTER TABLE lakehouse.demodb.yellow_taxi_2022 ADD COLUMN(fare_per_mile double)')
# describe the table
spark.sql('describe table lakehouse.demodb.yellow_taxi_2022').show(25)
def clean_database(spark):
# clean-up the demo database
spark.sql('drop table if exists lakehouse.demodb.testTable purge')
spark.sql('drop table if exists lakehouse.demodb.zipcodes purge')
spark.sql('drop table if exists lakehouse.demodb.yellow_taxi_2022 purge')
spark.sql('drop database if exists lakehouse.demodb cascade')
def main():
try:
spark = init_spark()
create_database(spark)
list_databases(spark)
basic_iceberg_table_operations(spark)
# demonstration: Ingest parquet and csv data into a watsonx.data Iceberg table
create_table_from_parquet_data(spark)
ingest_from_csv_temp_table(spark)
# load data for the month of February to June into the table yellow_taxi_2022 created above
ingest_monthly_data(spark)
# demonstration: Table maintenance
perform_table_maintenance_operations(spark)
# demonstration: Schema evolution
evolve_schema(spark)
finally:
# clean-up the demo database
clean_database(spark)
spark.stop()
if __name__ == '__main__':
main()
- To submit the Spark application, specify the parameter values and run the following curl command. The following example shows the command to submit iceberg.py application.
curl --request POST --url https://<region>/lakehouse/api/v2/spark_engines/<spark_engine_id>/applications \
--header 'Authorization: Bearer <token>' --header 'Content-Type: application/json' --header 'Lhinstanceid: <instance_id>' --data '{
"application_details": {
"conf": {
"spark.hadoop.fs.s3a.bucket.<wxd-data-bucket-name>.endpoint": "<wxd-data-bucket-endpoint>",
"spark.hadoop.fs.cos.<COS_SERVICE_NAME>.endpoint": "<COS_ENDPOINT>",
"spark.hadoop.fs.cos.<COS_SERVICE_NAME>.secret.key": "<COS_SECRET_KEY>",
"spark.hadoop.fs.cos.<COS_SERVICE_NAME>.access.key": "<COS_ACCESS_KEY>"
"spark.sql.extensions":"org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions,authz.IBMSparkACExtension",
"spark.hadoop.wxd.apikey":"Basic xxx",
"spark.sql.extensions":"<required-storage-support-extension>,authz.IBMSparkACExtension"
},
"application": "cos://<BUCKET_NAME>.<COS_SERVICE_NAME>/<python_file_name>",
}
}
Parameter values:
<token>
: To get the access token for your service instance. For more information about generating the token, see Generating a bearer token.<instance_crn>
: The instance ID from the watsonx.data cluster instance URL. Example, crn:v1:staging:public:lakehouse:us-south:a/7bb9e380dc0c4bc284592b97d5095d3c:5b602d6a-847a-469d-bece-0a29124588c0::.<wxd-data-bucket-endpoint>
: The host name of the endpoint for accessing the data bucket mentioned above. Example, s3.us-south.cloud-object-storage.appdomain.cloud for a Cloud Object storage bucket in us-south region.<wxd-bucket-catalog-name>
: The name of the catalog associated with the data bucket.<wxd-catalog-metastore-host>
: The metastore associated with the registered bucket.<cos_bucket_endpoint>
: Provide the Metastore host value. For more information, see storage details.<access_key>
: Provide the access_key_id. For more information, see storage details.<secret_key>
: Provide the secret_access_key. For more information, see storage details.<BUCKET_NAME>
: The storage bucket where the application file resides.<COS_SERVICE_NAME>
: The Cloud object Storage service name.<python_file_name>
: The Spark application file name.
Limitations:
- The user must have full access to create schema and table.
- To create data policy, you must associate the catalog to Presto engine.
- If you try to display schema that is not existing, the system throws nullpointer issue.
- You can enable the Spark access control extension for Iceberg, Hive and Hudi catalogs.